
Crystal-melt interfacial free energies of hard-dumbbell systems

Yan Mu and Xueyu Song
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA

�Received 19 May 2006; revised manuscript received 2 September 2006; published 29 September 2006�

The crystal-melt interfacial free energies of different crystal orientations and crystal forms for the hard-
dumbbell systems have been calculated directly using a multistep thermodynamic perturbation method via
nonequilibrium work measurements with a cleaving procedure. We found that for the plastic crystal phase, the
interfacial free energies decrease as the reduced bond length L* increases and the anisotropy is very weak as in
isotropic systems. On the other hand, for the orientationally ordered crystal phase, the interfacial free energies
become more than three times larger and the anisotropy is about 13%. These results may have significant
implications for our understanding on the nucleation kinetics in molecular systems and the search of optimal
conditions of protein crystallization.
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The crystal-melt interfacial free energy � is of significant
importance in the nucleation and crystal growth. Both its
magnitude and anisotropy are primary physical parameters
governing the kinetics and morphology of crystal growth �1�.
In recent years, much effort has been made on the measure-
ments and predictions of this quantity with experimental,
theoretical, and computer simulation methods.

Experimentally, � is mainly estimated through measure-
ments of crystal nucleation rates �2–5�. Direct measurements
are difficult and so far only a few materials have been stud-
ied via Wulff construction �6,7�. However, the values of �
obtained by measuring crystal nucleation rates are not very
accurate due to the approximations inherent in the classical
nucleation theory. Theoretically, the basic approach of calcu-
lating the crystal-melt interfacial free energy has been the
density-functional theory �DFT� �8–11�. Unfortunately, the
results from the DFT method are highly dependent on the
approximations used and the density profile parametrizations
employed in the DFT studies. Moreover, it is very difficult to
resolve the anisotropy of the interfacial free energies with the
DFT method �11�.

Thus computer simulations will be very useful alterna-
tives to provide reliable information on the crystal-melt in-
terfaces and their interfacial free energies. In recent years,
two main simulation methods are developed: capillary-wave
method �12–19� and thermodynamic integration with a
cleaving procedure �20–25�. The capillary-wave method is
relatively accurate in determining the anisotropy of the inter-
facial free energies. However, it is difficult for this method to
provide very accurate values of � �18�. Alternatively, the
crystal-melt interfacial free energy per unit area is defined as
the reversible work required to form a unit area of the inter-
face, which can be created through a cleaving procedure.
However, it is very time consuming for the thermodynamic
integration method to avoid hysteresis, and in certain situa-
tions hysteresis is large and persistent and it is difficult to
eliminate such hysteresis. Recently, we have developed a
multistep thermodynamic perturbation method to compute
the interfacial free energies by nonequilibrium work mea-
surements with a cleaving procedure �25�. This new method-
ology has overcome some of the difficulties of using thermo-
dynamic integration and thus opens the door to calculate
interfacial free energies of more complex systems.

So far, the crystal-melt interfacial free energies for sys-
tems with isotropic potentials, such as a hard-sphere system
�18,21,24�, Lennard-Jones systems �17,20,22,25�, or metallic
systems �12,13,15,16�, have been investigated extensively.
For systems with anisotropic potentials, only the interfacial
free energy of the plastic crystal system, which has similar
behaviors as the spherical systems, was studied recently �19�.
However, to the best of our knowledge, there are no studies
yet on the estimation of the magnitude nor the anisotropy of
the crystal-melt interfacial free energy for an orientationally
ordered crystal system, which is qualitatively different from
isotropic systems. Such information is not only useful for our
understanding of the nucleation kinetics of molecular sys-
tems, but also has practical implications for the search of
optimal conditions of protein crystallization �26,27�. There-
fore, reliable estimations of the magnitude and the anisotropy
of the crystal-melt interfacial free energies for such systems
with anisotropic potentials are highly desirable. However,
both the capillary-wave method and thermodynamic integra-
tion with a cleaving procedure become invalid to calculate
such quantities for the case of the orientationally ordered
crystal phase. On the one hand, the interface between the
orientationally ordered crystal and its melt is faceted and the
interfacial fluctuations cannot be measured. On the other
hand, there exists a large hysteresis between the forward and
reverse paths using a traditional thermodynamic integration
method with a cleaving technique. Thus our newly devel-
oped multistep thermodynamic perturbation method �25�
provides a practical way for such calculations.

In this paper, we have used this method to compute the
crystal-melt interfacial free energies of different crystal ori-
entations for orientationally disordered and orientationally
ordered hard-dumbbell systems by nonequilibrium work
measurements with a cleaving procedure. For the hard-
dumbbell systems, there are two kinds of basic crystal struc-
tures: orientationally disordered fcc plastic crystal �PC� and
orientationally ordered crystal �OOC�. In the current work,
one of the OOC structures CP1 is considered as a detailed
phase diagram existed both from simulations and DFT cal-
culations �28–31�. Figure 1 shows the two hard-dumbbell
crystal structures and the notations of crystal directions used
in this paper.

The system potential of hard-dumbbell systems is taken as
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a site-site hard-sphere potential with the dumbbell sphere
diameter �. The hard-dumbbell system is characterized by a
dimensionless reduced parameter L*=L /�, where L is the
bond length �28�. A crystal-melt interface can be created by
the following cleaving procedure �22,25�: stage 1, cleave the
crystal phase with the cleaving walls; stage 2, cleave the melt
phase in a similar way; stage 3, juxtapose the cleaved crystal
and melt systems by rearranging the boundary conditions
while maintaining the cleaving walls; stage 4, remove the
cleaving walls from the combined system. The cleaving-wall
potential �c�r� is taken as a short-range repulsive potential
similar to the system potential. The interfacial free energy �
is the reversible work needed in the process divided by the
area of created interface. Traditionally the total reversible
work is computed by the thermodynamics integration
method �20–24�. However, there exists a large hysteresis
between the forward and reverse paths with a traditional
thermodynamic integration method for a highly repulsive
cleaving potential.

Recently, Jarzynski shows that an equilibrium
free-energy difference can be expressed as an exponential
average of the works performed on the system �32�:
exp�−��F�= �exp�−�Wi→f��i, where �=1/kT is the recipro-
cal temperature in energy units, and �F=Ff −Fi is the free-
energy difference between the initial and final equilibrium
system states. Wi→f is the work involved in a process taking
the system from the initial to the final state. The angular
brackets indicate that this quantity is an ensemble average
performed on the initial equilibrium system state “i.” This
result is independent of both the path from the initial to the
final system state and the rate of system parameters changing
along the path, which suggests that the equilibrium free-
energy difference can be extracted directly from an ensemble
of nonequilibrium works. Thus, instead of computing the re-
versible work with a thermodynamic integration method, we
can obtain the free-energy difference by the nonequilibrium
work measurements �25�. However, straightforward employ-
ment of Jarzynski equality is impractical, especially for the
cases where the free-energy difference between two equilib-
rium states is relatively large. In order to circumvent such
difficulties, the multiple-step thermodynamic perturbation
strategy may be the best choice as we demonstrated recently
�25�. Moreover, the Bennett acceptance ratio method �33,34�
is used to minimize the variance in the calculation of the
free-energy difference between two equilibrium states by
combining the information in both forward and reverse paths
�34,25�.

In this work, we have calculated the crystal-melt interfa-
cial free energies of the hard-dumbbell systems near the
triple point along L* using Monte Carlo �MC� simulations
via the above strategy. First of all, the pure crystals and their
melts are prepared separately according to the coexistence
conditions. The coexistence densities of crystals and fluids
are taken from �Ref. �29��. Details of system geometries of
crystal bulk phases for different crystal orientations are given
in Table I. The corresponding liquid phase has the same
number of particles.

In our simulations, the principle of determining the initial
and final positions of the cleaving walls xi and xf is that xi
should be large enough to ensure that the cleaving walls do
not interact with the system, and xf should be chosen where
the molecules do not pass and collide across the cleaving
plane. The forward direction of the nonequilibrium work
measurements is defined as from xi to xf.

A series of thermodynamic perturbation steps are em-
ployed to calculate the free-energy difference for each stage
in the cleaving procedure. For each thermodynamic pertur-
bation step, the nonequilibrium works in both forward and
reverse paths are sampled and then combined together to
calculate the free energy difference in the corresponding per-
turbation step �25�. In current work, 30 000 MC steps for
stages 1,2 and 50 000 MC steps for stage 4 are performed for
system equilibration; 50 000 MC steps are performed for
data collection for each thermodynamic perturbation step.

FIG. 1. A schematic picture showing the two
hard-dumbbell crystal structures: �a� fcc plastic
crystal; �b� orientationally ordered crystal CP1.

TABLE I. The system geometries and the number of particles of
the crystal bulk phases for different crystal orientations in our simu-
lations. For PC structures, the lengths are in units of a= �4/�c�1/3,
which is the size of the corresponding fcc unit cell and �c is the
corresponding coexistence solid density. For the CP1 structure, a
monoclinic form with 	=60.0, �=�=67.0, and the dimensions are
shown with all lengths in units of �, which is the diameter of the
sphere of the hard-dumbbell molecules.

Solid Interface Geometry Particles number

PC �100� 20a
9a
9a 6480

PC �110� 12�2a
6�2a
9a 5184

PC �111� 12�3a
5.5�2a
3�6a 4752

CP1 S1 32.56�
16.28�
13.88� 4500

CP1 S2 32.58�
16.29�
13.91� 4500

CP1 S3 33.35�
16.28�
16.28� 5400
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Nonequilibrium works are sampled at every configuration
during the run of data collection.

Actually, the number of thermodynamic perturbation steps
needed in each stage depends not only on the free-energy
difference between initial and final states, but also on the
system potential. In practice, it is straightforward to deter-
mine the number of thermodynamic perturbation steps ac-
cording to the Bennett variance. Namely, if the Bennett vari-
ance becomes very large in certain thermodynamic
perturbation steps, an intermediate state should be inserted to
improve the accuracy of the result. Thus, we can flexibly
design a scheme of calculating the free-energy difference to
make the calculations more efficient and accurate for various
systems.

The interfacial free energies of different crystal orienta-
tions for the hard-dumbbell systems are obtained by sum-
ming the free-energy differences in the four stages. For the
hard-dumbbell system, there is no work required in stage 3.
The results are scaled with the diameter of a hard sphere with
the same volume as the hard dumbbell and given in Table II.
Our estimate of error bars includes two parts: statistical and
systematic errors. The statistical error can be reduced by in-
creasing the number of thermodynamic perturbation steps
and the sampling number of nonequilibrium works. The
main systematic error results from the fluctuations of the
interface position. When the cleaving walls are far from the
cleaving plane, the position of the interface cannot be con-
fined at the cleaving plane exactly, especially in stage 4
where the system contains two interfaces. In order to esti-
mate the systematic errors, several independent computations
for stage 4 with different perturbation step sizes are per-
formed and the largest variance is taken as a systematic error.
Compared with statistical error, the systematic error is more
important in the current case. The combinations of statistical
and systematic errors are given in Table II as total error
bounds.

As the plastic crystal phase of a hard-dumbbell system is
equivalent to an effective fcc hard-sphere system, the scaled
interfacial free energy of a plastic crystal phase would be
expected to be the same as that of the hard-sphere system. In
fact, from the results shown in Table II, it can be seen that
the scaled interfacial free energies of the PC phase do not
change much with the reduced bond length L* even when
there are substantial coexistence density changes. Moreover,
the anisotropy of the interfacial free energies of PC hard-

dumbbell systems disappears within our error estimate as L*

increases. This is due to the fact that the differences among
the interfaces of different crystal orientations are greatly
weakened by the orientational disorder of hard-dumbbell
molecules. Once the orientations of the hard-dumbbell mol-
ecules become ordered, the interfacial free energies increase
dramatically, which are more than three times larger than that
of an orientationally disordered PC phase �35�. In addition,
the anisotropy of the interfacial free energies of a CP1 phase
is about 13% which is an order of magnitude larger than the
estimate in metallic systems �7�, where 1–2 % anisotropy is
already known to affect solidification significantly.

Such large increases both in the magnitude and in aniso-
tropy of the interfacial free energies for the orientationally
ordered phase may have significant implications in our un-
derstanding of the nucleation processes of molecular sys-
tems. Assuming that this trend does not change dramatically
when soft attractions are added to the system, which is true
for isotropic systems �24�, we would expect that the forma-
tion of an orientationally ordered crystal phase will be sig-
nificantly difficult and a nonspherical critical nucleus path
may be the rule rather than the exception. It will be interest-
ing to see how the strength and range of soft attractions can
affect the interfacial free energies in anisotropic systems,
especially when the critical point becomes metastable �26�.

In summary, we have calculated the crystal-melt interfa-
cial free energies of different crystal orientations for the
hard-dumbbell systems near the triple point along L* directly
using a multistep thermodynamic perturbation method by
nonequilibrium work measurements with a cleaving proce-
dure. We find that for the plastic crystal phase, the interfacial
free energy � decreases with the reduced bond length L*

increasing and the anisotropy disappears. With the ordering
of the orientations of the hard-dumbbell molecules, the inter-
facial free energy � increases dramatically and the aniso-
tropy becomes an order of magnitude stronger in contrast to
the isotropic systems.

In contrast to the traditional thermodynamic integration
method, the efficiency and reliability of the multistep ther-
modynamic perturbation method makes the calculations pos-
sible. For example, in the stage 2 of the splitting liquid sys-
tem, additional stretching and compressing of the liquid
system are needed in order to avoid a large hysteresis of the
reversible work for the thermodynamic integration method
�24�. For the multistep thermodynamic perturbation method,

TABLE II. The crystal-melt interfacial free energies of different crystal orientations of the hard-dumbbell
systems. All interfacial free energies are in units of kBT /d2, where d is the diameter of a hard sphere with the
same volume as the hard dumbbell and d3=�3�1+ 3

2L*− 1
2L*3�. The interfacial free energies along S1 and S2

are the same due to symmetry.

Solid L* �100 �110 �111

PC 0.0 0.59±0.01 0.58±0.01 0.57±0.01

0.15 0.57±0.01 0.57±0.01 0.57±0.01

0.30 0.60±0.01 0.60±0.01 0.60±0.01

�S1
�S2

�S3

CP1 0.40 2.19±0.02 2.19±0.02 2.48±0.02
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the free-energy difference in each stage can be directly com-
puted without any other additional modifications. Further-
more, since the free-energy difference is obtained by non-
equilibrium work measurements and a combination of the
information from both the forward and reverse paths mini-
mizes the statistical error, there is no requirement on
the reversibility of the path and no hysteresis in the calcula-
tions. Therefore, this method will be very useful for the
calculations of free-energy differences, especially for those
situations where it is difficult to use thermodynamic integra-

tion due to the large hysteresis between the forward and
reverse paths. Our applications to the dumbbell system offer
an example where such calculations will not be practical
otherwise.
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